

LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage Regulators General Description Features

The LP2952 and LP2953 are micropower voltage regulators with very low quiescent current (130 μ A typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). They are ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.

The LP2952 and LP2953 retain all the desirable characteristics of the LP2951, but offer increased output current, additional features, and an improved shutdown function.

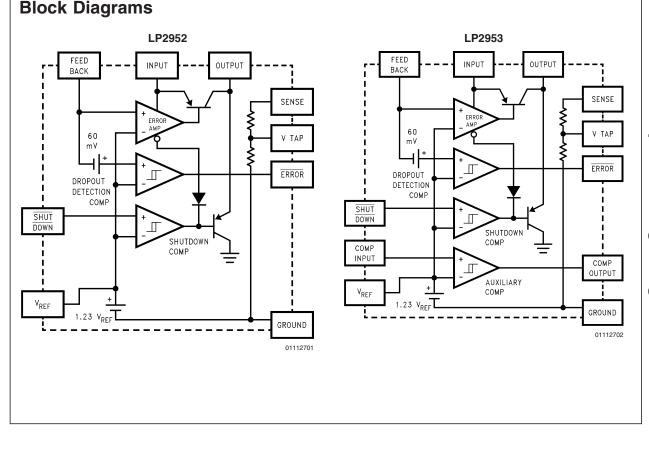
The internal crowbar pulls the output down quickly when the shutdown is activated.

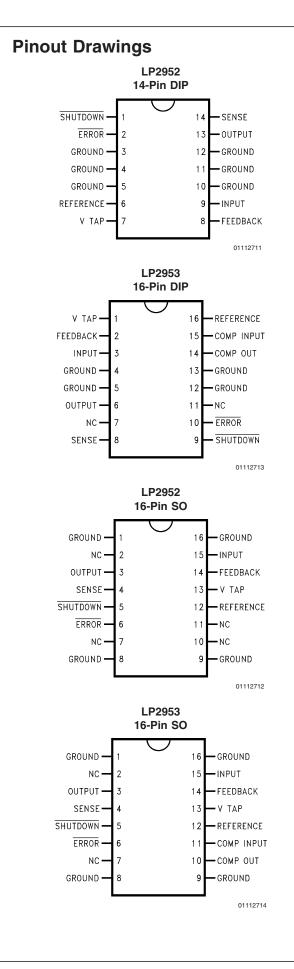
The error flag goes low if the output voltage drops out of regulation.

Reverse battery protection is provided.

The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.

The parts are available in DIP and surface mount packages.


- Output voltage adjusts from 1.23V to 29V
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection
- 50 mA (typical) output pulldown crowbar
- 5V and 3.3V versions available


LP2953 Versions Only

 Auxiliary comparator included with CMOS/TTL compatible output levels. Can be used for fault detection, low input line detection, etc.

Applications

- High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Snap-ON/Snap-OFF regulator

Ordering Information

	LP2952		
Order Number	Temp. Range (T _J) °C	Package	NSC Drawing Number
LP2952IN,	-40 to	14-Pin	N14A
LP2952AIN,	+125	Molded	
LP2952IN-3.3,		DIP	
LP2952AIN-3.3			
LP2952IM,	-40 to	16-Pin	M16A
LP2952AIM,	+125	Surface	
LP2952IM-3.3,		Mount	
LP2952AIM-3.3			

LP2953

LF 2355								
Order Number	Temp. Range (T _J) °C	Package	NSC Drawing Number					
LP2953IN,	-40 to	16-Pin	N16A					
LP2953AIN,	IN, +125 Molded DIP							
LP2953IN-3.3,								
LP2953AIN-3.3								
LP2953IM,	-40 to	16-Pin	M16A					
LP2953AIM,	+125	Surface						
LP2953IM-3.3,		Mount						
LP2953AIM-3.3								
LP2953AMJ/883	–55 to	16-Pin						
5962-9233601MEA	+150	Ceramic DIP	J16A					
LP2953AMJ-QMLV			JIOA					
5962-9233601VEA								
LP2953AMWG/883	–55 to	16-Pin						
5962-9233601QXA	+150	Ceramic	WG16A					
LP2953AMWG-QMLV		Surface	WGIOA					
5962-9233601VXA		Mount						

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	$-65^{\circ}C \le T_A \le$	LP2953AI-3.3
	+150°C	LP2953AM
Operating Temperature Range		Input Supply Vo
LP2952I, LP2953I, LP2952AI,		Feedback Input
LP2953AI, LP2952I-3.3,		Comparator Inp
LP2953I-3.3, LP2952AI-3.3,		Shutdown Input
LP2953AI-3.3	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$	Comparator Ou
LP2953AM	$-55^{\circ}C \le T_A \le$	4)
	+125°C	ESD Rating (No
Lead Temp. (Soldering, 5 seconds)	260°C	
Power Dissipation (Note 2)	Internally Limited	

Maximum Junction Temperature	
LP2952I, LP2953I, LP2952AI,	
LP2953AI, LP2952I-3.3,	
LP2953I-3.3, LP2952AI-3.3,	
LP2953AI-3.3	+125°C
LP2953AM	+150°C
Input Supply Voltage	-20V to +30V
Feedback Input Voltage (Note 3)	-0.3V to +5V
Comparator Input Voltage (Note 4)	-0.3V to +30V
Shutdown Input Voltage (Note 4)	-0.3V to +30V
Comparator Output Voltage (Note	
4)	-0.3V to +30V
ESD Rating (Note 15)	2 kV

Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}$ C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, $I_L = 1$ mA, $C_L = 2.2 \mu$ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

3.3V Versions

Symbol	Parameter	Conditions	Typical	LP2952AI-3.3,	LP2953AI-3.3	LP2952I-3.3,	LP2953I-3.3	Units
				Min	Max	Min	Max	
Vo	Output Voltage		3.3	3.284	3.317	3.267	3.333	V
				3.260	3.340	3.234	3.366	
		$1 \text{ mA} \le I_L \le 250 \text{ mA}$	3.3	3.254	3.346	3.221	3.379]

5V Versions

Symbol	Parameter	Conditions	Typical	LP2952AI,	LP2953AI,	LP2952I,	LP2953I	Units
				LP2953AM	(Note 17)			
				Min	Max	Min	Max]
Vo	Output Voltage		5.0	4.975	5.025	4.950	5.050	V
				4.940	5.060	4.900	5.100	
		$1 \text{ mA} \le I_L \le 250 \text{ mA}$	5.0	4.930	5.070	4.880	5.120	

All Voltage Options

Electrical Characteristics

Limits in standard typeface are for $T_J = 25$ °C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, $I_L = 1$ mA, $C_L = 2.2 \ \mu$ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

Symbol	Parameter	Conditions	Typical	LP295 LP295 LP295	LP2953AI, 2AI-3.3, 3AI-3.3, 53AM 16, 17)	LP2952I, LP2953I, LP2952I-3.3, LP2953I-3.3		Units
				Min	Max	Min	Max	
REGULA	TOR							
<u>ΔV_O</u> ΔT	Output Voltage Temp. Coefficient	(Note 5)	20		100		150	ppm/°C
$\frac{\Delta V_{O}}{V_{O}}$	Output Voltage Line Regulation	$V_{IN} = V_O(NOM) + 1V$ to 30V	0.03		0.1 0.2		0.2 0.4	%

All Voltage Options (Continued)

Electrical Characteristics (Continued)

Limits in standard typeface are for $T_J = 25^{\circ}C$, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, $I_L = 1$ mA, $C_L = 2.2 \ \mu$ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

Symbol	Parameter	Conditions	Typical	LP2952AI, LP2953AI, LP2952AI-3.3, LP2953AI-3.3, LP2953AM (Notes 16, 17)		LP2952I, LP2953I, LP2952I-3.3, LP2953I-3.3		Units
				Min	Мах	Min	Max	
۸Vo	Output Voltage Load	I _L = 1 mA to 250 mA	0.04		0.16		0.20	%
$\frac{\Delta V_{O}}{V_{O}}$	Regulation (Note 6)	$I_L = 0.1 \text{ mA to } 1 \text{ mA}$			0.20		0.30	
V _{IN} –V _O	Dropout Voltage (Note 7)	I _L = 1 mA	60		100 150		100 150	mV
		I _L = 50 mA	240		300		300	
					420		420	
		I _L = 100 mA	310		400 520		400 520	
		I _L = 250 mA	470		600		600	
					800		800	<u> </u>
I _{GND}	Ground Pin Current (Note 8)	I _L = 1 mA	130		170 200		170 200	μA
		I _L = 50 mA	1.1		2		2	mA
					2.5		2.5	
		I _L = 100 mA	4.5		6		6	
					8		8	
		I _L = 250 mA	21		28		28	
-					33		33	
I _{GND}	Ground Pin Current at	$V_{IN} = V_O(NOM) - 0.5V$	165		210		210	μA
	Dropout	$I_{L} = 100 \mu A$	105		240		240	
I _{GND}	Ground Pin Current at Shutdown (Note 8)	$V_{SHUTDOWN} \le 1.1V$	105		140		140	μA
I _{LIMIT}	Current Limit	V _{OUT} = 0	380		500		500	mA
					530		530	
$\frac{\Delta V_O}{\Delta P d}$	Thermal Regulation	(Note 10)	0.05		0.2		0.2	%/W
e _n	Output Noise Voltage	C _L = 4.7 μF	400					μV
	(10 Hz to 100 kHz)	C _L = 33 μF	260					RMS
	I _L = 100 mA	C _L = 33 μF (Note 11)	80					
V _{REF}	Reference Voltage	(Note 12)	1.230	1.215 1.205	1.245 1.255	1.205 1.190	1.255 1.270	V
$rac{\Delta V_{REF}}{V_{REF}}$	Reference Voltage Line Regulation	$V_{IN} = 2.5V \text{ to } V_O(\text{NOM}) + 1V$ $V_{IN} = V_O(\text{NOM}) + 1V \text{ to } 30V$ $(\text{Note } 13)$	0.03		0.1 0.2		0.2 0.4	%
$rac{\Delta V_{REF}}{V_{REF}}$	Reference Voltage Load Regulation	I _{REF} = 0 to 200 μA	0.25		0.4 0.6		0.8 1.0	%
$\frac{\Delta V_{REF}}{\Delta T}$	Reference Voltage Temp. Coefficient	(Note 5)	20					ppm/°

All Voltage Options (Continued)

Electrical Characteristics (Continued)

Limits in standard typeface are for $T_J = 25$ °C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, $I_L = 1$ mA, $C_L = 2.2 \ \mu$ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

Symbol	Parameter	Conditions		Typical	LP2952AI, LP2953AI, LP2952AI-3.3, LP2953AI-3.3, LP2953AM (Notes 16, 17)		LP2952I, LP2953I, LP2952I-3.3, LP2953I-3.3		Units
					Min	Max	Min	Мах	
I _B (FB)	Feedback Pin Bias Current			20		40 60		40 60	nA
I _O (SINK)	Output "OFF" Pulldown Current	(Note 9)			30 20		30 20		mA
DROPOU	T DETECTION COMPAR	ATOR							
I _{OH}	Output "HIGH" Leakage	V _{OH} = 30V		0.01		1 2		1 2	μA
V _{OL}	Output "LOW" Voltage	$V_{IN} = V_O(NOM) - 0$ $I_O(COMP) = 400 \ \mu$	$_{\rm N} = V_{\rm O}({\rm NOM}) - 0.5V$ (COMP) = 400 $\mu {\rm A}$			250 400		250 400	mV
V _{THR} (MAX)	Upper Threshold Voltage	(Note 14)			-80 -95	-35 -25	-80 -95	-35 - 25	mV
V _{THR} (MIN)	Lower Threshold Voltage	(Note 14)	Note 14)		-110 - 160	-55 - 40	-110 - 160	-55 - 40	mV
HYST	Hysteresis	(Note 14)		15					mV
SHUTDO	WN INPUT (Note 15)	<u> </u>							
V _{os}	Input Offset Voltage	(Referred to V _{REF})		±3	-7.5 -10	7.5 10	-7.5 -10	7.5 10	mV
HYST	Hysteresis			6					mV
I _B	Input Bias Current	$V_{IN}(S/D) = 0V \text{ to } 5V$	V	10	-30 -50	30 50	-30 -50	-30 50	nA
			LP2953AM	10	-30 -75	30 75			
AUXILIA	Y COMPARATOR (LP29	53 Only)							
V _{os}	Input Offset Voltage	(Referred to V _{REF})		±3	-7.5 -10	7.5 10	-7.5 -10	7.5 10	mV
			LP2953AM	±3	-7.5 -12	7.5 12			
HYST	Hysteresis			6					mV
I _B	Input Bias Current	$V_{IN}(COMP) = 0V to$	o 5V	10	-30 -50	30 50	-30 -50	30 50	nA
			LP2953AM	10	-30 -75	30 75			
I _{OH}	Output "HIGH" Leakage	V _{OH} = 30V V _{IN} (COMP) = 1.3V		0.01		1 2		1 2	μA
			LP2953AM	0.01		1 2.2			
V _{OL}	Output "LOW" Voltage	$V_{IN}(COMP) = 1.1V$ $I_O(COMP) = 400 \ \mu M$		150		250 400		250 400	mV
			LP2953AM	150		250 420			

LP2952/LP2952A/LP2953/LP2953A

All Voltage Options (Continued)

Electrical Characteristics (Continued)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{J-A} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using the equation for P(MAX),

$$P (MAX) = \frac{T_J(MAX) - T_A}{\theta_{J-A}}$$

Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. See APPLICATION HINTS for additional information on heatsinking and thermal resistance.

Note 3: When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground. Note 4: May exceed the input supply voltage.

Note 5: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 6: Load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the range of 100 µA to 1 mA and one for the 1 mA to 250 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1V differential. At very low values of programmed output voltage, the input voltage minimum of 2V (2.3V over temperature) must be observed.

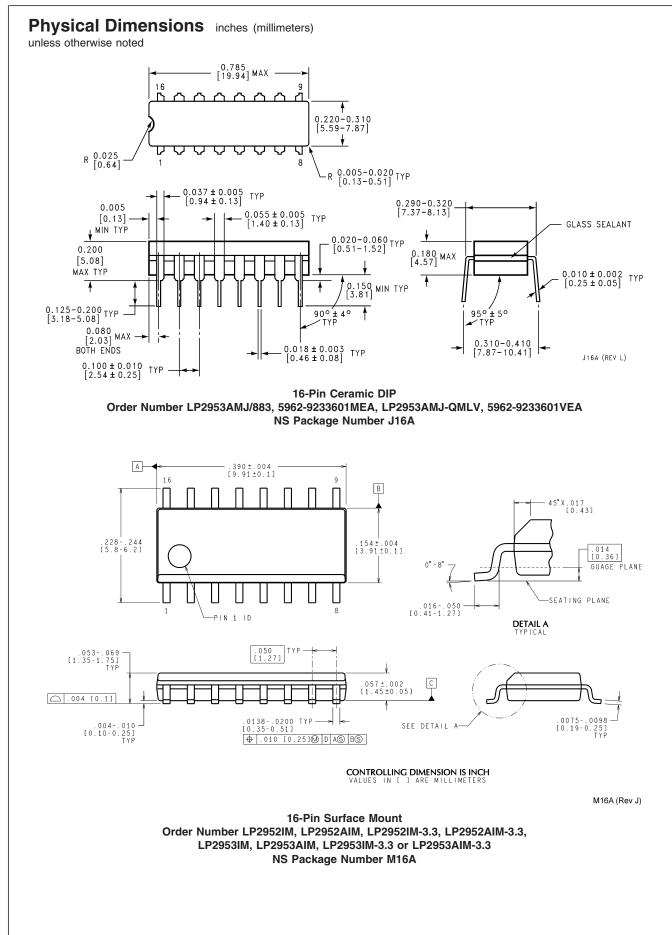
Note 8: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive divider (if used).

Note 9: $V_{SHUTDOWN} \leq 1.1V$, $V_{OUT} = V_O(NOM)$.

Note 10: Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at $V_{IN} = V_O(NOM)+15V$ (3W pulse) for T = 10 ms.

Note 11: Connect a 0.1 μF capacitor from the output to the feedback pin.

Note 12: $V_{REF} \le V_{OUT} \le (V_{IN} - 1V)$, $2.3V \le V_{IN} \le 30V$, $100 \ \mu A \le I_L \le 250 \ mA$.


Note 13: Two separate tests are performed, one covering $2.5V \le V_{IN} \le V_O(NOM) + 1V$ and the other test for $V_O(NOM) + 1V \le V_{IN} \le 30V$.

Note 14: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured at $V_{IN} = V_O(NOM) + 1V$. To express these thresholds in terms of output voltage change, multiply by the Error amplifier gain, which is $V_{OUT}/V_{REF} = (R1 + R2)/R2$ (refer to *Figure 4*).

Note 15: Human body model, 200 pF discharged through 1.5 k Ω .

Note 16: Drive Shutdown pin with TTL or CMOS-low level to shut regulator OFF, high level to turn regulator ON.

Note 17: A military RETS specification is available upon request. For more information on military products, please refer to the Mil-Aero web page at http://www.national.com/appinfo/milaero/index.html.

